OPTICOOL —A Multiprocessor Optimizer for Muon Codling Simulation Codes

Steve Bradker
s_bradker@hotmail .com

Version 1.1 January 8, 2001
Version 1.2 March 3,2001 MuCool Note 0197

Introduction

Muon codling simulation studies [1] are time-consuming; simulating a single gparatus configuration may take
many hours. When the user is saching for an optimal apparatus configuration, it is often necessary to simulate one
configuration, examine the results, choase anew configuration to test, compase new simulator control files and
restart the ssimulator... and dothis many, many times.

OPTICOOL isapackage that “wraps around” an existing simulation code. It aids the user in two ways: (1)
OPTICOOL brings the mmputing power of many procesorsto bea on the simulation task, reducing the dock time
required to find a nealy-optimal apparatus configuration, and (2) with initial guidance from the user, OPTICOOL
chooses new apparatus configurations to examine, compases new simulator control files and initi ates new
simulations without further user intervention.

Intheided case, the user sets up OPTICOOL and the simulation padkage of choice He spedfiesthose gparatus
parameters that can be modified —the optimization variables — and spedfies how certain simulation results — the
merit variables— are to be combined into an overall figure of merit for ead apparatus configuration examined.
Havingtold OPTICOOL what procesors are avail able for use and how predsely the optimum neels to be located,
the user starts the optimization process walks away, and comes badk when OPTICOOL has tested enough apparatus
configurations to have homed in on a dose-to-optimal configuration, charaderized the optimum, and halted.
OPTICOOL controls all of the processors from a unified user interface and provides arunning progress report of its
adivities. Even in the lessthan-ided case, when human judgment must still be gplied at intermediate stages of the
optimization, OPTICOOL may till be of substantial benefit, reducing the dock time required to oltain intermediate
results and all owing the user to guide the processonly when enough work has been done to make intervention
productive.

Overview and Terminology

One simulation run of asimulation program examines the performance of one apparatus configuration. The
apparatus configuration to be examined is edfied by setting the values of a set of configuration variables—
absorber lengths, magnetic field strengths, cavity phases, etc. During OPTICOOL’s sach for an optimal apparatus
configuration, some configuration variables are held fixed, whil e others — the optimization variables— are dlowed
to vary within prescribed optimization variable bounds.

Each run of the simulation program reports the values of a set of smulation output variables. A subset of these —
the merit variables— may contribute to determination of a configuration merit —asingle figure-of-merit which
spedfies whether the gparatus configuration now being considered is better or worse than other competing
configurations. By definiti on, the optimal configuration isthat apparatus configuration, from among all those
examined, which has the highest configuration merit.

The configuration variables are spedfied to the simulation program through one or more simulator input files, ina
format determined by the simulation program. OPTICOOL is taught how to compaose simulator input files, changing
the optimization variables as needed. The user must compose asimulator input file template that looks very much
like an ordinary (non-OPTICOOL) simulator input file. However, for those configuration variables which are
optimization variables (hence subjed to change during optimization), the at¢ual value of the variable isreplacel by
asubstitution marker. Prior to ead simulation, the optimizer determines the values of optimization variables,
reads in the simulator input fil e template, and replaces ead substitution markers by an adual value, thereby
producing a simulator input file that the simulator can urderstand.

During each ssimulator run, the ssmulator may produce anumber of reports charaderizing the behavior of the
apparatus configuration. One of these reports — the merit output file — reports the values of all the merit variables—
values that may enter into the cdculation of the anfiguration merit. Following spedficaions supplied by the user,
OPTICOOL uses the reported values of the merit variables to compute the final configuration merit, compares the
configuration merit to the merits of apparatus configurations previously studied, chooses new values of the
optimization variables, composes new simulator input files, and starts a new simulator run. This continues until pre-
defined optimization stop criteria are satisfied, at which point OPTICOOL proceeals to characterizethe optimum
acording to user instructions. When charaderization is complete, OPTICOOL halts.

We may consider the anfiguration merit asa scdar function —the merit function — over abounded N-dimensional
configuration space whose axes are the N optimizaion variables. The optimizer’ stask isto find the N coordinates
of the paint in configuration spacewhere the merit function takes its maximum value. The shape of the merit
function may be asimple smocth hill whose summit is found somewhere well within the bounds of the
configuration space in such cases, the optimization will almost certainly converge in afairly straightforward
manner to the true optimum. Of courseit is posshble to imagine far more pathologicd merit functions, in which the
true optimum is surrounded by deep vall eys and false summits. In such cases, only afine-grained search over the
entire volume of the configuration spacewill offer substantial assurancethat the true maximum has been located —a
seach which will take forever or even longer unlessthere ae very few optimizaion variables. The user’stask isto
try to use physicsinsightsto define the optimization task in a manner that makes the shape of the merit function as
much like asimple hill as possble. One canot exped to succeal every time on the first try.

The user controls the optimization processby compasing the optimizer control file and providing it asinput to
OPTICOOL. Among other things, the optimizer control file spedfies:

« the names of the processorsto participate in the optimization, and therole eabisto play

« the optimization variables— names, initial values, boundary values etc.

« the substitution markers— names, associated ogtimizaion variables, dataformats, etc.

« the merit variables— names, how each contributes to the configuration merit, etc.

 how exadly the optimum must be locaed, and how the optimum isto be charaderized oncefound.

OPTICOOL produces aterminal screen display which summarizes progress, areport file which details the results
ohtained, and a diagnostics file which produces extensive information about the optimization process Thelast is
usually of interest only if troubles are encountered. The reports normally produced by the smulator are dso
generated, but are normally not kept.

Optimization Strategies and Caveats

Thereisno magic in OPTICOOL. It does not substitute for physicd insight; at best it may give some pradicd help
to the user as he tries to develop such insight with resped to a spedfic problem.

OPTICOOL's primary optimization strategy is a modified variable-size smplex algorithm. It is best charaderized
as a semi-smart hill-climbing algorithm. As such, it will proceal to the optimum of a non-pathologicad merit
function in afairly efficient manner, and will be fairly easily led astray by a pathologicd merit function. Simplex
algorithms are widely used in all kinds of optimization problems, so their strengths and wegknesses are well
understoodand dacumented. A particularly detail ed (to the point of tedium) explanation, focused on optimization of
industrial-scde chemicd processes, isfound in reference[2]. In short, the dgorithm strides through configuration
space cdculating the mnfiguration merit at each step, switchbacking its way uphill toward the optimum, deceasing
its dride length asit approaches the optimum, and stoppng when the volume of configuration spacestill being
examined is sufficiently small.

Oncethe optimum has been located, OPTICOOL will define optimum characterization linesin configuration
spacewhich passthrough the optimum and are parall €l to the axes. User-spedfied lists of configurations along these
lines are simulated. If the merit deaeases aong the charaderization lines as you move away from the optimum, you
may fed somewhat reassured (though obviously not completely certain) that the optimum you have located isthe
one true optimum.

For optimizations involving only one or two optimization variables, it isfeasible to doalattice optimization. The
program simulates configurations at a regularly spaced lattice of points within configuration space The best point is
chosen, the lattice granularity is reduced, and another latticeis computed, centered on the previous best point. In
most cases, two stages are enoudh to locate the optimum to within the required acairacy. The dhances of being
fooled hy afalse optimum are much reduced (but not eliminated) using thiskind of search.

Although it is easy to make up scenarios in which merit functions will be dmmplex and fool OPTICOOL — merit
functionsthat look like double-dlit interferencefringes cometo mind —I susped that such examples are rare in the
red world of pragicd muon codling designs.

How many optimization variables might one employ? OPTICOOL is currently written to permit up to 20 This limit
is $mpleto change, but in any case, | susped that ten optimization variables are probably a pradicad upper limit. By
including many optimization variables upon which the configuration merit is only weakly dependent, one soon finds
that one configuration's merit looks very much like the next, and that horrendously long simulation runs—
propagation of millions of beam particles— are needed to deted the diredion of “uphill” in the merit function. It is
often best to concentrate initially upon working with afew optimization variables that are known to be important,
and to use later optimization runs to assessthe cnfiguration merit’s dependence on other variables.

If you have 100codling cdlsin your apparatus, and each cooling cdl has a cavity phase to define, dori't even think
of defining 100 opgimization variables, one per cdl. It is overwhelmingly likely that the optimum phase varies only
slowly and simply with cel number. Parameterizing phase as a simple function of cdl number and using
coefficients of the function as optimization variablesis far more pradicd. It is physicdly implausible to suppcse
that the best configuration is one in which most caviti es have al5-degreephase, but cavities whose cél number
happens to be aFibbanacd number will need to have 30 degreephases; thereisno padnt in setting up the
optimization schemato be so general.

Processs, Processors and Processor | nterconnedion

Although it is possible to run OPTICOOL on asingle processor, much of its power rests on its abili ty to make
efficient use of “farms’ of processors. Given a simulation of reasonable complexity, fairly large numbers of
procesors (up to several dozen) may be put to beneficial use. Eventually, of course, the time required to
communicae between processors becomes sgnificant compared to the simulation time on ead procesr, and at
that point thereislittle benefit in adding still more processors. There is no simple answer to how many procesorsis

too many to utili ze efficiently; it depends grongly on the complexity of the goparatus configuration being examined,
the sophistication of the model employed to propagate particles through various regions of the gparatus, the shape
of the merit function, etc. OPTICOOL has never run with fifty processors, but | think it is safe to say that fifty
processors could be put to beneficial use on ICOOL simulations of apparatus having several hundred regions (e.g.
50fairly simple cdls), and substantially smaller GEANT-based simulations. Ten processors can be used efficiently
with virtually any coadling configuration complex enough to show any promise of success

OPTICOOL consists of two types of process one instance of a Bossprocessand one or more instances of a
Worker process As emsonly fair, the Bossmanages the optimization processand tell s the Workers what to dg
the Workers do all of the hard work, the simulations themselves. The user communicaes with OPTICOOL only
through the Boss viaterminal i/ o, input files, and report files. All terminal i/o is of the simplest kind, so that remote
operation of the antire system viatelnet is graightforward. The Bossruns the optimization algorithm in accordance
with the user’ sinstructions, defines the simulations to be performed, farms the simulation work out to the Workers,
coll eds the simulation results from the Workers, computes the overall configuration merit for the arrent apparatus
configuration, deddes upon a new simulation to be performed, orders the Workersto doit . . . The Worker codeis
littl e more than a simple wrapper around the simulation code. The Boss sipervises the whole optimization process
but performs no simulations itself.

In the usual case, eat procesr (aphysicd computer) runs one instance of the Worker process and one procesor
runs, in addition to its Worker process the single instance of the Bossprocess The Bossuses very littl e ammputing
time except for a few moments between one simulation and the next.

All processors participating in an OPTICOOL run must be ale to communicate via anetwork. At present,
OPTICOOL uses Linux implementations of remote shell (rsh) and remote @py (rcp) commands. The Bossuses rsh
commands to send instructions to the Workers. The Bossuses rcp command to send disk fil es (typicaly simulator
input files) to the Workers, whil e the Workers use rcp commands to send fil es (typicdly simulator resultsfiles) to
the Boss Asin any well-conceived autocracy, Workers do not communicate with other Workers.

Other than network-compatible versions of Linux, there is no multi processor management software (farm
management software) needed. However, the processors must not be isolated from one another by unreasonable
seaurity barriers; they must be éle to rsh and rcp fredy with one aother, and must not impaose unreasonable limits
on the sizeand frequency of such transadions. | have found it necessary to modify afew default Linux
configuration fil e settings to provide adequately open interprocessor communicaions [3]. Doing so normally
requires superuser (roat) accessto the cmmputers. (However, OPTICOOL runsin anormal user acount.) Where
computers languish under the lidlesseyes of paranoid seaurity mavens, an occasional discrete poisoning may prove
helpful.

How isthe simulation work divided amongst Worker processes? In two dfferent ways. At some pointsin the
optimization process thereis only one gparatus configuration being examined at atime. In this case, all Workers
simulate the same @nfiguration, ead propagating its own urique list of beam particles. Upon completion, the merit
variables from the various Workers are gathered and combined by the Boss At other points, there ae many
apparatus configurations being examined at the same time. In this case, ead configuration is simulated by one
Worker. It isthis asped of the beam simulation problem -- that the overall simulation workload can be divided in
two straightforward ways amongst many Workers — that minimizes the interprocessor communication requirements
and simplifies the design of the optimization process

It is worth noting in passing that when a single gparatus configuration is simulated by several Workers at one time
(using unique beam particle sets), comparing the merits returned from the various Workers gives immediate insight
regarding the statistical significance of the ssmulated merit function and the usefulness of comparing it with merits

computed for competing apparatus configurations. If five Workers compute merits of 0.85, 0.90, 0.95, 1.00 and
1.05for configuration A, and one needs to compare the merit of configuration A (merit(A) = 0.95) with that of
configuration B (let us suppose merit(B) = 0.93 with similar scatter), the reliabili ty of the merit comparison (e.g.
configuration A is better than configuration B) is clealy very low. But it is exadly this kind of comparison that
optimizers use to dedde what configurations to try next. Either one must stop (the optimum is located to sufficient
predsion), or compute the merit function more acarrately; in general, thiswill be acomplished only by
propagating many more particles, perhaps at grea expense in computing time. In situations where the merit function
is changing rapidly as one steps along in configuration space one may save alot of time by computing merits to
only the acairacy required to dedde upon the next configuration to try.

Musings on the Configuration M erit

It may seem a bit confiningto have the merit of an apparatus configuration characterized by a single number. After
all, amuon cooling apparatus must embody many virtues. It must, at least, reduce several components of the beam
emittance, preserve areasonable fradion of the incident muons, and doso using apparatus which can be built at
reasonable wst. However, whether the optimizaion is done “by hand” (i.e. with human judgment exercised at the
start of eadr simulator run) or by an automatic optimization procedure of some sort, one must finally be aleto say
“all things considered, apparatus configuration #23 seems to be better than the dternatives, so it isthe one we will
build”. In requiring ared spedficaion for how one goes about the “al things considered”, OPTICOOL is merely
forcing the user to be explicit about defining tradeoffs that might otherwise be left fuzzy. It's hard to imagine this
being a bad thing.

By default, OPTICOOL accepts atable of simulator results that might enter into the final figure of merit — the so-
cdled merit variables. Thefirst thing it does isto transform the value of ead merit variable into a merit
component. OPTICOQL triesto be alittl e it intelligent about how it goes about this.

For some merit variables, the merit increases as the merit variable's value increases; in other cases, the oppaiteis
true. In principle, the relationship could be more complex than this, but in fad it is difficult to find a good example
in the muon coali ng task; you can never get an emittancetoo low or a muon survival fradion too high.

On the other hand, it is certainly not true that merit is expeded to vary linealy with the merit variable s value.
Consider the muon survival fradion. One might well dedde that anything below 60% is unacceptable, anything
above 90% is good enough, and that merit risesfairly smoaothly from “unacceptable” to “good enough” between
60% and 90% survival.

To make this qualitative description of merit spedfic enough to cdculate, OPTICOOL provides amerit transfer
function, as down. It ranges from user-defined minimum merit Mmin (typically zero) at -co to maximum merit
Mmax (typicdly 1) at +co.

The user can spedfy the values of the merit variable — Pleft and Pright — between which the merit rises deeply from
just above Mmin to just below Mmax. In cases where merit increases with increasing merit variable value, Pleft <
Pright. In cases where merit increases with deaeasing merit variable value (e.g. an emittance), Pleft > Pright.

For the example &ove, Mmin might be 0, Mmax might be 1, Pleft would be 0.6 (60% muon survival), and Pright
would be 0.9 (90% muon survival). Though it is plotted only for merit variable values between Pleft and Pright, the
merit function iswell defined for all values of the merit variable.

Thisprocedure is carried aut independently for every merit variable participating in the cdculation of the overall
configuration merit. When al of the merit components have been cdculated, they are joined together in a user-
spedfied manner to determine the overall configuration merit.

Merit components may be combined by either addition, or multiplicaion, or bath. Imagine two merit variables
which might be thought of as similar virtues of about equal importance. Then you can set Mmin = 0 for both, Mmax
= 1 for both, and add the two merit components together to determine the total virtue. If one merit variable istwice
asimportant to you as the other, set its Mmax = 2. On the other hand, if you have amerit variable which is of
overridingimportance— muon survival fradion might be agood example — then it should be multiplied into the
other merits, so that no configuration having a poar score in this variable will end up with agood overall merit, no
matter what the configuration’'s other virtues. OPTICOOL all ows one to combine merit components into partial
sums, and then multi ply the sums together to oktain afinal figure of merit. So Mfinal = (M1 + M2) * M3 * (M4
+ M5 + M6) is apossble formula, where Mfinal isthe final configuration merit and M1. . . M6 are merit
components.

| anticipate that this method d combining merit components will satisfy most users. For exceptional circumstances,
one dways has the option to cdculate the configuration merit diredly, either in the simulator or in a private version
of OPTICOQOL, where dl the generality of ageneral purpose programming language may be employed.

Merit Transfer Function
Mmax
o
=
Mmin
Pleft Merit Parameter Value Pright

How do the merit variables get from the simulator to OPTICOOL ? Througha fil e written by the smulator. Thisis
the only substantial change that must be made to the simulator to embed it within OPTICOOL. Upon completion of
every run, the simulator must write afile, one merit variable per line, spedfying the name and value of each
potential merit variable. For a given optimizaion, the user may instruct OPTICOOL to ignore some of the merit
variableslisted in the file, but naturally all those variables OPTICOQL isinstructed to use must be present in the file
and must have valid values.

Bounds on Optimization Variables

Sincethe optimization variables represent apparatus construction parameters — lengths, magnet currents, etc. — there
are pradicd limitsto al of them. Some of the limits are hard limits; there is 50 cm available for an absorber, and it
can't be any longer than that. The window cannot be thinner than 150 microns for safety reasons. Other limits are
soft; although it is preferable to stay within the stated limits, it is permissible to stray beyond them if a compelling
case can be made.

In OPTICOOL, every optimization variable has an upper and lower bound, as well as a parameter spedfying how
rigidly the boundary isto be enforced. For ead configuration, a boundary merit is computed. It is 1 if every
optimization variable is within the stated baunds. It is deaeased as optimization variables gray further and further
outside the stated baundaries. For boundaries with rigid enforcement, the optimization variable can transgressthe
boundary by only atiny distance before the boundary merit approaches zero. As boundary enforcement for agiven
variable beaomes more relaxed, the impad of straying a given distance acossthe boundary is diminished.

At the cmpletion of each simulation run, the boundary merit for the anfiguration (which does not depend in any
way on the output from the simulator) and the simulated merit (which depends only on the output of merit variables
from the simulator) are cmbined to form the final figure of merit for the cnfiguration. In this way, intolerable
boundary violations are “punished” by telling the optimizer that it has just stepped into a anfiguration of very low
merit —and it had best reverse aurse & once Note that thisreversal is desirable whether the low merit is the result
of aserious boundary violation, an intrinsicdly lousy configuration, or both. When an optimum doestruly lie
beyond a boundary, the optimizer will push against the boundary repeaedly, but it soon leans not to make large
legpsinto forbidden territory.

It isimportant to avoid letting the boundary merit ever go to zero within aregion, no matter how absurd the
configuration. The optimizer must always know what diredion to travel to repent of its recklessexplorations.

Inthisillustration, an optimization variable boundary for variable X liesat +1. Boundary merits for four different
boundary enforcement levels are drawn, ranging from the very relaxed S=1 to the very rigid S=20. (Sisthe rigidity
parameter spedfied by the user for ead boundary.) If boundary enforcement is very relaxed, then the optimal
configuration locaed by OPTICOOL may lie well outside the prescribed baundaries. With boundary enforcement as
tight as 20, it is very unlikely that the optimum will be found in forbidden territory.

Therigidity of boundary enforcement should refled the st of implementing a solution that lies outside the
boundaries. This varies between physicad impossibility (very rigid baunds) to dight additional costs (very relaxed
bounds).

Using OPTICOOL

If you are starting right from the beginning, you have afair bit of work to do tefore starting your first optimization
run. By “starting at the beginning”, | mean no computers, no experience with Linux, ICOOL (or whatever simulator
you are using) and OPTICOOQOL, and not much careful thought — the kind of thought that translates rather diredly
into an ICOOL control file, for example — about the gparatus you are hoping to study. Few potential usersarein
this position.

There ae many aternatives to an unasssted cold start. If you dori't have Linux computers readily at hand, seeif you
can use someone dse’s computers. For example, there is currently lots of time avail able on the Ole MissLinux
cluster, and you can operate it from just about anywhere using Telnet. Thisis by far the preferable option if you are
running asmall problem, or aren’'t sure whether OPTICOOL will be useful to you or not.

If you're not wanting to get into Linux system install ation, you can drop-ship your new computers to someone who
caningtall and configure Linux, ICOOL, and OPTICOOQOL, and send the computers on to you, realy to conned to
your network and use; in such cases, it’s always best to seled hardware in consultation with the people who will be
doing the software install ation. Alternatively, you can go to an established OPTICOOL site with a computer or two
of your own and get started with guidance from someone who has done it before.

If you deddetoinstal Linux yourself, | strongy recommend paying the big bucks (about $50-$100 and buying a
commercial Linux distribution like Redhat Linux. Y ou should also make sure you get a wpy of Setting Up Redhat
Linux 6 and Setting Up Linux Workers 01 (locd documents) which describe some changesto default Linux
install ation options and configuration fil es that are required to make OPTICOOL run smoathly.

Insofar as possble, you should set up the OPTICOOL acounts and disk diredory structures $ that they exadly
parall el those used here; it makes debugging and distribution of new software much easier. We have atest version of

Boundary Merits

12 1

1.0

0.8 —S=1
= 0.6 4 — 52
z S=4
= 04 -

S=20

02 -

0.0 -

'0.2 T T T 1

1.0 15 2.0 25 3.0
X

ICOOL which generates fake simulation output with known results; you should be sure to test your new OPTICOOL
install ation with it.

Before trying to run a new apparatus configuration in OPTICOOL, run it in stand-alone ICOOL (or whatever your
simulator of choice may be). Y ou may find out one of several things: (1) that the proposed apparatusis too hopeless
to be worth optimizing, (2) that it is 9 robust to configuration changes that there isn’t enough optimization to doto
justify setting up OPTICOOL, or (3) that OPTICOOL can probably help you, and you now have enough pradicd
experience simulating the new apparatus to set up the optimizer rather easily. | wouldn’t use OPTICOOL until | had
made several successful ICOOL runs of the proposed apparatus and had developed some “feel” for what
configuration variables and merit variables were important.

| upgrade OPTICOOL from time to time, and users s$ould inquire about upgrades. Suggestions for improvements
are dways welcome, and many users will find it fairly straightforward to tail or and enhance OPTICOQOL to better
serve their neads. Improvements of general utility can always be incorporated in the next standard release.

If you dedde to download and install OPTICOOL yourself, you'll probably find that installation is pretty
straightforward. The more your computer system resembles ours, and the more thoroughly you have chedked out
your operating system, your g77 compil er, and your network, the eaier it will be. Y ou will recéve some sourcefiles
and some data file templates. Y ou will runa cuple of small command files to compile and link the Bossand
Worker code, and dstribute the Worker code (which embeds the simulator) to all the Workers. A couple of things
won't work because | forgot to tell you something or send you something; before you get all hot and bahered, you'll
giveme a cHl and we'll get it sorted out.

Performing an Optimization Run
Among the things that must already be in place

1. You must have the cmmputers on and boded, conneded to the network, and able to talk to one another. You
must be &le to start aterminal session on the processor which isto run the Bossprocess If in doubt, it isnot a
bad ideato log onto the opticool acamunt on the Boss and ping each Worker processor from the Bossprocesor
to confirm at least minimal connectivity.

2. You must have prepared and dstributed to the Worker processors the Worker program, which has the simulator
embedded in it as a subroutine. The embedded simulator must produce aMerit Output Fil e which returns values
for al of the Merit Variablesthat might enter into your caculation of Configuration Merits.

3. You must have avalid Bossprocessrealy to go on the Bossprocessor. The Bossprocessdoes not normally
change from appli cation to applicaion.

4. You must have prepared simulator control fil es describing the gparatus, the beam, etc. Idedly they have
already been tested using a stand-alone simulator run. These files will be modified slightly a bit | ater.

Here iswhat you do to carry out the run.

1. OntheBossprocessor, login to the opticool acount, either using alocd terminal or viatelnet. The cdbd

command will take you to the oc/bd (opticool bossdata) directory where most of the upcoming work will be
done.

2. Make alist of the optimization variables you will be using, the bounds on ead, and the rigidity of the bounds.
Dedde how thoroughly you want the optimum configuration charaderized in this variable. Often thislist isjust
adlight modificaion from a previous run; for example, you may be dlowing a new configuration variable to be
varied and optimized, or assgning a fixed value to aformer optimizaion variable.

3. Make alist of substitution marker s associated with the optimization variables. Insimple ases, thereisal:1
correspondence between substitution markers and optimization variables, but it is smetimes useful to asociate
more than one substitution marker with a single optimizaion variable. An example: two devices must fit side by
sidein afixed space so that centimeters added to one must be subtraded from the other.

4. Make alist of merit variables contributing to the overall figure of merit for the anfiguration. Make sure that
they are dl present in the Merit Output Fil e produced by the simulator. Often thisis a slight modificaion from a
previous run.

5. Make alist of al the processorsthat will be participating in the optimization. Usually this does not change
from run to run.

6. Based onthese lists, compose the optimization control file OptCont.dat. It livesin the oc/bd dredory. Files
from previous runs may be apied and modified as required. It is much easier to modify an existing file, even
one from a different optimization padage, than it isto compaose one from scratch.

7. For eadh ssimulator input file that spedfiesthe value of at least one optimization variable, edit the fil e, replace
the numericd values for optimization variables with substitution markers, and store the fil e under a new name,
for example forOOLtemplate instead of for00Lldat. The templates must be in the oc/bd drecory. Make sure
that the fileislisted in the Fil eTransfer sedion of OptCont.dat; thisis how you insure that when new simulator
input files are prepared by the optimizer, they are distributed to all of the Workers.

8. Prepare and list in the FileTransfer sedion of OptCont.dat any additional input files that must be distributed to
the Workers. Placethe files to be distributed in the oc/bd dredory

9. Definethe few additional control parametersin OptCont.dat. Save the file.

10. Issuethe bb command. Thiswill distribute fil es, start workers, perform the optimization task until done to
spedfication (or fatal error) and return reports.

11. Examinethereport filein the oc/bd dredory. In case of trouble, examine the diagnosefile.

References and Notes

[1] There ae anumber of simulation programs and padkages in use by people studying the muon codling problem,
but two of them —1COOL (Rick Fernow et. a.) and DPGEANT / GEANT4 (Paul Lebrun et. al.) — seemto bethe
most widely used and publicly acesshble. Asthe nameimplies, OPTICOOL was developed around ealy
implementations of ICOOL.

[2] Frederick H. Walters et. al., Sequential Simplex Optimization, CRCPress 1991 ISBN 0-8493-58949 Chapter
7, “ Additional Concerns and Topics’, describes a number of ways that optimizations can go wrong; it’s worth

reading, even though the more anusing portions (see “Safety Considerations’) are not diredly applicable to
optimizations of simulations.

[3] Avail able on request: Setting Up Linux Workers 01.doc which describes, among other things, how to open up
trouble-freelines of rsh/rcp communication between the mmputers.

Appendix A: A Complete Optimzation Control File

I+ +++++++++++++++++++++++++++++++++ +
Wor ker Nanes

I Specify the processors to participate as workers in the sinulation,
! and the speed of each (M&z CPU). Note that it is custonmary to run

! a worker instance on the boss processor, but to reduce its nom na

! speed by 10% or so to compensate for the time spent running boss

! code.

i nuxfarml 425
I'i nuxfarn® 475
i nuxfarnB 475
I'i nuxfarnmg 475
i nuxfarnb 475
i nuxfarnb 500
11 Bi gGee 350
Ilalethia 350

I + + + +++++++++++++++++++++++++++++++ +
Opti m zationVari abl es

! Define the optimization variables. Each has:

! --a nanme (often the sane as the fortran source code nane)

! --a lower bound

! --an upper bound

I --a nunber specifying how steep the nerit curve is at the boundaries
I --the nunber of summary configurations to be conputed

! --an optional comrent at the end of the line

ILength of absorber (per cell, neters)
absor ber Length 0.30 0.46 10. 11

ICurrent in solenoid (anps)
sol enoi dCurrent 1400. 2000. 25. 11 very tight bounds

I RF phase in accel erating cavities (degrees)
cavityPhase 10. 24. 5. 11 (Il oose bounds for now)

l + 4+ +++++++++++++++++++++++++++++++++

I nput Substitutions

! Define the input file substitutions. Each has:
I --a substitution marker e.g. {abc}
! --an optimzation variable nane

! --an output format specifier
I --anmltiplier M
! --an addend A

I For every occurrence of the marker in a ghost input file, the value
I M* optValue + Ais substituted, formatted as specifi ed.

{a} absor ber Lengt h 8.3 1.0 0.0
{s} sol enoi dCurr ent f8.1 1.0 0.0
{cp} cavityPhase f8.3 1.0 0.0

I + + + +++++++++++++++++++++++++++++++ +
Merit Vari abl es

! Define the nmerit variables. Each has:

I --a nanme (often the sane as the fortran source code nane)
! --a nerit conbination code, M Al, A2 ... A9
! --merit variable value at nornmalized nerit = 0.1
! --merit variable value at normalized nerit = 0.9
' --mnimmvalue of the merit function (usually 0.0)
' --maxi mumval ue of the merit function (usually 1.0)
I'Fraction of nmuons that nmake it through the apparatus
MuonSurvi val Fraction M 0.85 0.95 0.0 1.0

I Bunch Length in neters -- note this is good-when-| ow
BunchLength Al 10.0 5.0 0.0 1.0

ITransverse Enmittance -- note this is good-when-low and contributes tw ce as
I'much as the bunch | ength
TransverseEnmi ttance Al 0.35 0.20 0.0 2.0

I + + + +++++++++++++++++++++++++++++++ +
Fil eTransfers

Define the files to be sent fromboss to workers. Al files are

sent fromthe bd (boss-data) area of the boss to the wd

(wor ker-data) area of each worker.

!
!
!
!
' If asingle filename is specified, then the file is transferred
I unnodified and with the sane nanme to the designated worker.
!
!
!
!
!

If two filenanes are specified, then the input file (first name)

is subjected to variable substitution, producing an out put

file (second nane) in the boss data area. The output file is then
copied to the designated worker and deleted fromthe boss data area.

! Primary simulation control file for | COCL

for001. ghost for001. dat

L4+ ++ 4+ +++++++++++++++++4+++++++++++ 4+ +
Par anet er s
Define various opertating paraneters controlling the optim zation

process. Each line consists of a nane and a value. Al paraneters
must be explicitly specified; there are no defaults.

1

|

1

!

I nPartSim-- nunber of particles to propagate each optim zation
! sinulation

! nPartSum -- nunber of particles to propagate each sunmary

' simulation

I stopCriterion -- how snall a vol une you wander within before you
! stop sinulating, in normalized coordinates

I maxQpt Si ns -- maxi mum nunber of optim zation sinulations

nPartSim 500
nPart Sum 1000
stopCriterion 0.01

maxOpt Si ns 50

